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computing time is required for these calculations for 
non-periodic specimens if dynamical  scattering and all 
electron optical parameters are included. The approxi- 
mations outlined above make possible the simulation of 
these images and diffraction patterns within reasonable 
computing times. They therefore allow the possibility of 
least-squares refinement between computed images of 
trial structures and experimental many-beam images 
of defects. 

I am grateful to Dr M. O'Keefe and Professor J. M. 
Cowley for useful discussions in connection with this 
work. 
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Use of Lattice Imaging in the Electron Microscope in the Structure Determination of the 
126R Polytype of SiC 
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Lattice fringes corresponding to (00.3) spacings of the 126R polytype of SiC have been obtained in the 
electron microscope. A number of 10.l reflections were allowed to pass through the objective aperture to 
obtain the lattice fringes showing a periodicity of - 105 ,~ (one third of the c parameter of the hexagonal cell) 
and each unit-cell block is subdivided into smaller blocks corresponding to the spacings of 6H, 15R, 21R etc. 
The stacking sequence of these blocks has been used to work out the detailed structure of the 126R polytype. 
It has been suggested that the lattice resolution technique in conjunction with X-ray diffraction is likely to 
prove a useful method for determining difficult polytypic structures. 

Introduction 

There are a number of substances like SiC, ZnS, CdI 2 
etc. which are known to crystallize in many unique 
periodicities and crystal structures. SiC polytypes are 
characterized by the number of Si-C double layers and 
their stacking sequence in the unit cell. Out of the 
various polytypes, 6H is the most commonly occurring 
structure followed by 15R and 4H in order of 
frequency of occurrence. A unique feature of the high- 
period polytypes of SiC is that their unit cells are built 

up by stackings of the unit cells of more common 
structures of SiC like 6H, 15R, 4H etc. For example the 
structure of the 39H polytype of SiC expressed in 
Zhdanov notation is (33) 2 32(33) 2 (32) 2 which clearly 
shows that its unit cell consists of four unit cells of 6H 
and three unit cells of 15R stacked in a sequence 
represented by the sequence of 33 and 32 in this symbol 
(Azuma, Ohta & Tomita, 1963). 

When a high-period unit cell is dominantly built up 
of units of one small-period structure, its structure 
determination becomes comparatively simple. However 
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a high-period structure which is not based on any 
common modification becomes exceedingly difficult to 
work out. The present communication describes the 
structure determination of such a polytype of SiC 
(126R) with the help of lattice-imaging technique in the 
electron microscope. 

The 126R polytype of SiC was discovered by Verma 
(1957) and attempts to work out its structure since then 
have proved unsuccessful. This was primarily because 
its structure is not based on any single common 
modification and no clues are available for guessing 
trial structures. 

Structure determination 

Based on usual considerations employed in the struc- 
ture determination of SiC polytypes (Verma & 
Krishna, 1966) nearly 150 structures were postulated 
out of which only one structure gave a rough match 
with the observed intensities (Singh, 1967). 

The direct methods developed by Tokonami (1966) 
and Farkas-Jahnke (1966) were not attempted in view 
of the limitations of these methods (Gomes de 
Mesquita, 1968) which are likely to be as cumbersome 
as the trial-and-error method for an unusual structure 
like 126R. 

Use of lattice imaging in structure determination 

The lattice imaging of a number of extremely large 
period polytypes including that of the 126R of SiC has 
been reported recently (Dubey, Singh & Van Tendeloo, 
1977) and it has been suggested that the details in the 
lattice images can possibly be correlated with the 
crystal structure. Since each reflection contributes a 
sinusoidal distribution of charge density whose wave 
fronts coincide with the family of lattice planes giving 
rise to that reflection, the lattice image is formed by 
superposition of all the sinusoidal distributions cor- 
responding to the reflections used in the image 
formation. The sinusoidal distributions of charge 
density contributed by few 10. I reflections have been 
depicted in the form of traces of (10. l) planes in 
Fig. 1. It may be seen that the traces of all the lattice 
planes superimpose at points 3.078 A apart along the a 
axis and such superpositions occur at intervals of one 
third of the c repeat period in the hexagonal cell. 
Normally this would give rise to pronounced dotted 
fringes parallel to the a axis separated at ~105 A. 
However since a resolution of ~3 A was not possible in 
the present experimental set up, one observes uniform 
straight fringes. The smallest distance resolved in the 
present study was 10 A. Furthermore, there are other 
positions in the ~105 A interval where sinusoidal 
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Fig. 1. The sinusoidal distribution of charge density contributed by few 10./reflections of 126R polytype is depicted in the form of traces 
of (10./) planes. 
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distributions superimpose less efficiently along lines 
parallel to the a axis (Fig. 1). The superpositions of 
charge density with proper phases along these lines give 
rise to subsidiary fringes which divide the ~105 A 
interval into smaller blocks. Therefore the pronounced 
fringes separated at ~105 /t, (Fig. 2) essentially 
represent the lattice resolution of c planes of the 126R 
polytype. The lattice image contrast may bear a close 
correlation with the crystal structure provided that 
(Allpress & Sanders, 1973; McConneil, Hutchison & 
Anderson, 1974) (1)it  is possible to select an objective 
aperture which excludes those beams which are 
severely affected by spherical aberration and still 
include many reflections to contribute to the image, (2) 

4 

Fig. 2. Direct lattice imaging of 126R, SiC; a periodicity of 105-6 
A is observed. The arrow indicates the edge of the crystal foil. 

lattice planes to be resolved are exactly oriented parallel 
to the beam and (3) the crystal foils are thin enough to 
approximate to phase gratings. The first two conditions 
are exactly satisfied in obtaining the lattice image 
shown in Fig. 2, while the third condition is presumably 
satisfied only at the edges (marked by the arrow in Fig. 
2) of the crystal foil. It was therefore felt that subsidiary 
fringe separations in a unit-cell block of ~ 105 A may 
be correlated with the constituent structure blocks of 
commonly occurring polytypes. 

The lattice periodicity of ~ 105 A is subdivided into 
different blocks of approximately 20 A (8 layers), 17-6 
A (7 layers), 15 A (6 layers) and 12.6 A (5 layers) in 
the way represented in Fig. 3, which is slightly different 
from that reported earlier (Dubey, Singh & Van 
Tendeioo, 1977). On the basis of the majority of the 
structures worked out, blocks of 7-layer thickness are 
most likely to be 34 or 43, those of 6-layer thickness to 
be 33, and those of 5-layer thickness to be 32 or 23 in 
Zhdanov notation. For the lone 8-layer block 53 and 
44 were taken as the possible stacking sequences. In 
this way 29 (twentynine) possible structures were 
postulated out of which (53 43 32 23 33 33 23) 3 in 
Zhdanov notation was found to give a good match with 
the observed intensities (Table 1). The calculated 
intensities were corrected for Lp factors. The structure 
(53 43 32 23 33 33 23) 3 in Zhdanov notation may be 
written in A BC sequence as follows: 

A BCA BCBA CA BCA CBA BCA CBCA CBA BCA CBA B 
CA CBA B CBA CA B CA BA CB CA B CBA CA B CB A B CB 
A CA BCBA CA BCBA CA BA CBCA BCA CBA BCA BA C 
BCA BA CA BA CBCA BA CBCA BA CBCA CB I A . . . .  

Atomic parameters derived from this are: 

42 Si atoms at 0, 0, tz with z = 1/159 and 
t = 0, 3, 7, 9, 12, 15, 18, 22, 25, 28, 31, 34, 37, 41, 

43, 46, 48, 52, 56, 58, 62, 66, 68, 72, 74, 78, 80, 
82, 86, 89, 92, 95, 97, 101, 103, 105, 107, 111, 
113, 117, 119, 123; 

42 Si atoms at ], ], ] plus the above coordinates; 
42 Si atoms at ~-, ], ] plus the above coordinates and 
126 C atoms whose coordinates may be obtained by 
simply adding p to the z coordinates of the 126 Si 
atoms where 

3 1 
p _ _  _ _  _ _  

4 × 126 168 

I I i I I 1 
8 7 5 5 6 6 5 

105.6~ 

Fig. 3. Schematic representation of the stacking sequence of 
smaller blocks in the unit cell ofthe 126R polytype of SiC. 
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I in 

T a b l e  I. C a l c u l a t e d  a n d  o b s e r v e d  r e l a t i v e  i n t e n s i t i e s  f o r  t h e  s t r u c t u r e  126R 

C alc ulated Observed Calculated Observed 
10. l intensities intensities* l in 10. l intensities intensities* 

1 0.0 vvw 2 0 vvw 
4 0.1 w 5 0 a 
7 0.0 vvw 8 0-1 w 

10 0.2 w > 10.4 11 1-4 m s - ~  10.67 
13 0.1 w 14 0 a 
16 9.2 s 17 4.4 m s  > 10.17 
19 0-1 w 20 2.6 m s  < 10.1"7 
22 0.4 w 23 39.7 vs  

25  5 3 . 3  v s  26 6.8 m s  

28 0. I w 29 0. I v w  

31 0-2 w 32 0-3 w > 10-10 
34 23.0 s < 10.25 35 0. I w < 10.3"} 
37 29.1 s 38 2.1 m s  < 10.2"-0 
40 68.9 v s  > 10.25 41 484.0 v v s  

43 1.2 m s  44 32.5 s > 10.37 
46 5.8 m s  47 1-2 m s  

49 11.6 m s  > 10.46 50 0-1 w 
52 4.0 m s  53 0-2 w > 10.50 
55 3.2 m s  56 0-3 w 
58 0.2 w~_ I0.10 59 3-0 w ~  10.32 
61 24.0 s ~_ 10.34 62 90.3 vs  > 10.64 
64 75.7 vs  > 10.40 65 16.8 s < 10.34 
67 1.4 m s  68 0-1 w 
70 0.1 w 71 0-8 w > 10.56 
73 0 v v w  74 0-7 w < 10.71 
76 0 v v w  77 1-2 m s  

79 0.1 w 80 0.4 w > 10.56 
82 2.1 m s  83 0-1 w 
85 24.0 s 86 3.2 m s  

88 0.1 w 89 1.2 m s  

91 0 v v w  92 0-9 w 10.71 
94 0 v v w  95 0 v v w  

97 0 v v w  98 0 v v w  

100 0.3 w 101 2.6 m s  

103 2.0 m s  104 0 v v w  

106 0.2 w 107 0 v v w  

109 0.3 w 110 0.5 w 
112 0 v v w  113 0 a 
115 0.1 w 116 0 a 
118 0 v v w  119 0 a 
121 0 v v w  122 0 a 
124 0 v v  w 125 0 a 

* vs ,  s ,  m s ,  w,  v w ,  v v w ,  a stand for very strong, strong, medium strong, weak, very weak, very very weak and 
absent respectively. 

D i s c u s s i o n  

T h e  intui t ively sugges t ed  co r r e l a t i on  ( D u b e y ,  S ingh  & 
Van  T e n d e l o o ,  1977) be tween  the la t t ice  i m a g e  c o n t r a s t  
and  the c rys ta l  s t r uc tu r e  o f  the 126R p o l y t y p e  o f  SiC 
has  been f o u n d  to be  t rue ,  as the  in fe r red  s e q u e n c e  o f  
smal le r  b locks  is p r o v e d  to exist in the  real s t ruc tu re .  
T h e  lat t ice imag ing  t e c h n i q u e  has  been ra re ly  e m p l o y e d  
to w o r k  out  a c o m p l e t e  s t ruc tu re  (Al lpress ,  I i j ima,  R o t h  
& S t e p h e n s o n ,  1973) as in the  p resen t  case .  T h e r e f o r e  
lat t ice imag ing  seems to be a poss ible  aid in c o n j u n c t i o n  
with  X - r a y  d i f f rac t ion  for  w o r k i n g  ou t  c rys t a l  s t ruc-  
tures ,  pa r t i cu l a r ly  o f  po ly typ i c  c rys ta l s  hav ing  hun-  
d reds  of  a t o m s  in the  uni t  cell. T h e  l a t t i ce - imag ing  

t e c h n i q u e  has  been  f o u n d  m o r e  sui table  t h a n  X - r a y  
d i f f rac t ion  m e t h o d s  ( D u b e y ,  S ingh & V a n  T e n d e l o o ,  
1977) for  d e t e r m i n i n g  e x t r e m e l y  large  per iodic i t ies ,  and  
u n d e r  su i table  cond i t i ons  seems  also to be useful  in 
d e t e r m i n i n g  such  s t ruc tu res ,  pa r t i cu l a r ly  for  p o l y t y p e  
s t ruc tu res  w h i c h  are  no t  b a s e d  on c o m m o n l y  o c c u r r i n g  
s t ruc tu res  and  are  o the rw i se  difficult  to  w o r k  out .  

W e  are  gra teful  to D r  G.  V a n  T e n d e l o o  for  his k ind  
help and  to P r o f e s s o r  T. R. A n a n t h a r a m a n  and  D r  C. 
S u r y a n a r a y a n a  for  p rov id ing  thei r  E M  facil i ty du r ing  
the  p resen t  w o r k .  O n e  o f  us ( M D )  t h a n k s  C S I R  Ind ia ,  
for f inancia l  ass i s tance .  
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A Phase Transition in a 3D Growth-Disorder Model 
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It is shown that a model of growth disorder, describing the way in which substitutional disorder can be 
introduced into binary solid solutions at growth, exhibits a phase transition. In a particular case it is shown 
that the distribution in 2D sections of the crystal corresponds to the simple pair-interaction Ising model on a 
triangular lattice. 

Introduction 

In recent papers (Welberry & Galbraith 1973, 1975; 
Welberry 1977a,b) models of the way in which sub- 
stitutional disorder can be introduced into crystals at 
growth have been described. So far, however, these 
models have merely enabled distributions of binary 
variables (representing two molecular species) to be 
produced in two dimensions (2D) from given sets of 
somewhat arbitrary 'growth probabilities'. Our present 
aim is to put this work on a more realistic footing by 
extending the models to three dimensions (3D) and in 
addition to relate the 'growth probabilities' more 
directly to the forces involved when the molecular 
species interact at the crystal surface. 

It is important at the outset to emphasize the dis- 
tinction between the disorder produced by the type of 
growth process described here and a more general type 
of disorder which we shall refer to as dynamic disorder. 
In the latter we imagine the crystal to consist of mole- 
cules of different species which can rearrange them- 
selves at temperatures below the melting point to 
achieve a minimum free-energy configuration, while we 
imagine growth disorder to arise in situations where a 
molecule once embedded in the crystal surface is sub- 
ject to energy barriers sufficiently high that the 
possibility of subsequent rearrangement may be neg- 

lected. While the dynamic-disorder situation involves 
energy equilibrium over the whole 3D crystal, the 
growth-disorder process only involves equilibrium 
within the surface layer. A model that has been used 
extensively for describing systems involving energy 
equilibrium over the whole crystal is the nearest- 
neighbour Ising model for which the solution in 2D is 
known (Onsager, 1944) and for which a considerable 
amount of information in 3D is available from approxi- 
mate methods (see Domb, 1974). 

It has been shown (Enting, 1977a; Welberry, 1977a) 
that the 2D growth-disorder models previously 
described are equivalent to more general 2D Ising 
models on which restrictions have been imposed on the 
values of the parameters in the energy function 
(Hamiltonian). It has become apparent that these 
restrictions remove from the particular 2D Ising model 
just that character of the model essential for the occur- 
rence of a phase transition at a finite temperature. In 
fact it appears that 2D growth-disorder models give 
rise to lattice distributions that are little more than 
compatible I D distributions in different directions (see 
Welberry, 1977a: Enting, 1977b). In extending the 
growth-disorder models to three dimensions it is of 
prime interest whether the character of the disorder 
produced by these models is sufficiently removed from 
that of the 3D Ising model that a phase transition 


